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We study the morphological evolution of strained islands in growing crystal films by use of a continuum
description including wetting, elasticity, and deposition. We report different nonlinear regimes following the
elastic instability and tuned by the flux. Increasing the flux, we first find an annealinglike dynamics, then a
slower but nonconventional ripening followed by a steady regime, while the island density continuously
increases. The islands develop spatial correlations and ordering with a narrow two-peaked distance distribution
and ridgelike clusters of islands at high flux.
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I. INTRODUCTION

Nonequilibrium crystal growth is questioning many fun-
damental and experimental issues in particular in the domain
of self-organization of nanostructures �1–7�. For example,
quantum dots have lead to numerous applications �8� such as
photovoltaic cells, memory storage, or light emission. How-
ever, the different scenario governing island formations are
still challenged as regards their density, size distribution, and
spatial ordering �9–11�. We focus here on the properties of
islands produced in heteroepitaxy.

When a film is coherently deposited on a substrate with a
lattice mismatch, it experiences an elastic stress that can be
relieved by a morphological evolution. For strong enough
mismatch, islands are nucleated in an abrupt two to three-
dimensions transition. However, for intermediate mismatch,
the evolution begins by surface diffusion with a nucleation-
less ripple formation �12–15� which results from an elastic
instability reminiscent of the Asaro-Tiller-Grinfel’d �ATG�
instability �16,17�. Contrarily to the evolution in thick films
�16�, no dislocations are generated in thin films where in-
stead the ripples transform smoothly into islands separated
by a wetting layer �14�. In order to go beyond the simple
exponential growth description, one needs to take into ac-
count the nonlinear terms which allow to simulate island
coarsening quantitatively �18–22�. The question we address
in this article is the influence of the growth dynamics on the
spatial organization of the islands due to the elastic instabil-
ity. To tackle this problem, we use a continuum modelization
of the crystal accounting both for wetting and elastic inter-
actions. Wetting, which breaks the translational invariance in
the growth direction, introduces significant flux dependence.
Consequently, once diffusion proceeded and led to islands,
we find different nonlinear regimes as the flux F increases.
Departing from the near annealing case, island ordering
arises first as clusters form. Then, for high enough fluxes, the
island density is frozen and the dot density and ordering are
maximum. To the best of our knowledge, this work tackles
for the first time the influence of the growth dynamics �and
thence of the deposition flux� on the islands produced during
the ATG instability as nonlinear effects due to the boundary

condition at the surface together with the wetting potential
come into play.

II. CONTINUUM MODEL OF THE MORPHOLOGICAL
EVOLUTION

The dynamics of a surface during crystal growth involves
different mechanisms such as diffusion, attachment, or relax-
ation. The evolution of its surface z=H�r , t� at position r
= �x ,y�, see Fig. 1, with time t can be written as

�H

�t
= V�H� + afF , �1�

where V�H� is dictated by the predominant mechanisms at
stake while af is the film lattice parameter. In homoepitaxy,
symmetry constraints enforce V to depend only on the slope
of H �7� so that F disappears in the Galilean transformation
H�r , t�=Ft+h�r , t�. This invariance is violated in heteroepit-
axy when a film is coherently deposited on a substrate. We
consider a film evolving in the Stransky-Krastanov mode,
with a dynamics due to surface diffusion induced by chemi-
cal potential gradients. Hence,

V�H� = D�1 + ��H�2�S
2� , �2�

where D is a diffusion coefficient, �S, the surface
gradient, and �, the surface chemical potential given by the
functional derivative �=��FEl+FS� /�H, where FS

=�dr��H��1+ ��H�2 and FEl is the elastic free energy. Wet-
ting is embedded in the H dependence of the surface energy
�, which describes the change with H of the local environ-
ment of a particle when the film/substrate interface is present
�23�, and which precisely breaks translational invariance in

*Also at École Centrale Marseille. FIG. 1. �Color online� Sketch of the film/substrate geometry.
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the z direction. Note that neither alloying nor anisotropy are
considered here, which can prove significant in some experi-
mental regimes, see e.g., �2,4,24–27�.

To set scales, we choose to depict a Ge0.25Si0.75-like film
deposited on a Si substrate with a reference lattice with a
substrate �film� lattice parameter as=0.27 nm �af =1.01 as�.
Surface diffusion is given by D=Ds exp�−�Ed /kBT�af

4 /kBT
with �Ed=0.83 eV and Ds=8.45 10−10 m2 /s, see e.g., �17�,
and the working temperature is 700 °C. The film surface
energy is � f =1.3 J /m2 and we extrapolate ab initio calcula-
tions for Si/Ge systems �28� by considering ��h�=� f�1
+cw exp�−h /��� where �=af and cw=0.09. The characteristic
length and time scales that will be used below are then l0
=� f /2�1+� f�E0 and t0= l0

4 /D� f, where E0=Ef�
2 / �1−� f� is an

elastic energy density involving the film Poisson ratio � f and
film Young modulus Ef together with the film/substrate mis-
match �= �af −as� /as. The numerical values concerning a
Ge0.25Si0.75-like film are then l0=27 nm and t0=25 s. On
these time and length scales, the deposition and diffusion
noise �7,29� which can be implemented in Eq. �1�, are in fact
not relevant and were not considered.

Mechanical equilibrium is supposed to be achieved on
time scales faster than the system evolution, which enforce
the Lamé equations �q�pq=0 to be valid in the film and sub-
strate. The stress tensor �pq is a linear function of the strain
tensor

epq =
1

2
��qup + �puq� − epq

r , �3�

where u is the displacement with respect to the substrate
reference state. The reference strain is

epq
r = �1 − af/as��pq��px + �qy� , �4�

in the film and 0 otherwise, where �pq is the Kronecker sym-
bol with p ,q=x ,y ,z. Although anisotropy is certainly rel-
evant, our first concern here is on the influence of a deposi-
tion flux on the dynamics of stressed films. Different sources
of anisotropy are revealed by experiments, which appeal for
specific examination out of the scope of the present paper.
Hence, to simplify the model, we consider isotropic elastic-
ity, where strains and stresses are related through

�ij =
Ef

1 + � f
�eij +

� f

1 – 2� f
ell�ij	 . �5�

Furthermore, we consider identical film and substrate elastic
constants as experiments usually involve materials with simi-
lar constants. Different elastic constants could only change
significantly the second order in the asymptotic expansion
that we develop below, but by an extra small factor propor-
tional to the difference in these constants. The Lamé equa-
tions are then solved using Fourier transforms with respect to
the two-dimensional position r, F�h�= �2	�−2�dreik·rh�r�,
where k= �kx ,ky�, with the following boundary conditions:
the film/substrate interface is coherent with continuous
stresses and the film/vacuum surface is free, with a negligible
surface stress. Hence, we impose

u�r,z = 0−� = u�r,z = 0+� , �6�

� · z�r,z = 0−� = � · z�r,z = 0+� , �7�

� · n�r,z = H�r�� = 0, �8�

where z is the normal to the film/substrate interface, while n
is the normal to the film surface. To solve the last boundary
condition, we use here the small-slope approximation ame-
nable for arbitrary deposited thicknesses, which is not the
same set of approximation as the thin film approximation
used in Ref. �21�. The present small-slope approximation is
relevant for the growth case where the mean film height is

arbitrarily thick. Defining h̄ as the spatial average of H, see
Fig. 1, we suppose that the film surface is characterized by a

shallow modulation where H− h̄ is small compared to the
instability wavelength computed below which is of order of
the characteristic length l0, ratio of the surface energy to the
misfit elastic energy density; hence, we decompose H using a
small parameter 
 as

H�r,t� = h̄�t� + 
h�r,t� . �9�

We thus obtain the displacements u as series of 
 up to
second order, u=
n=0

2 
nu�n�, where

u�0� = �0,0,2�� fz/�1 − � f�� . �10�

At first order, one gets

ux
�1��k,z� =

��1 + � f�e�k��z−h̄�

1 − � f

� ikx��k��z − h̄� + 2�1 − � f��h�k�/�k� , �11�

and with a similar expression for the y component after x and
y exchange, while the z component is given by

uz
�1��k,z� =

��1 + � f�e�k��z−h̄�

1 − � f
� �1 – 2� f − �k��z − h̄��h�k� ,

�12�

see e.g., �30� in the case of identical film and substrate elastic
constants. As a consequence of the nonlinearity enforced by
the boundary condition �8�, the displacements involve con-
volutions of the film height h�k�. We find

ux
�2��k,z� =

i��1 + � f�e�k��z−h̄�

�1 − � f��k�3 � dk1
h�k1�h�k − k1�

�k1�

� �kx�z − h̄��k���k��k1�k · k1 − 2�k · k1�2

− 2� f�k ∧ k1�2� + �1 – 2� f�kx�k��k1�k · k1

− 4�1 − � f��k1,x�k�2k · k1 + � fkx�k ∧ k1�2� ,

�13�

with a similar expression for uy
�2� after the exchange of x and

y. Finally, the last component uz
�2� is given by
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uz
�2��k,z� =

��1 + � f�e�k��z−h̄�

�1 − � f��k�3 � dk1
h�k1�h�k − k1�

�k1�

� ��z − h̄��k�2�2�k · k1�2 + 2� f�k ∧ k1�2 − �k�

��k1�k · k1� + 2�1 − � f�k2�k1�k · k1 − 2�1 – 2� f��k�

���k · k1�2 + � f�k ∧ k1�2� . �14�

Given the expression of u up to second order in 
, we are
then in a position to compute at order 
2 the elastic contri-
bution �El which is the elastic energy density evaluated at
the film surface,

�El�r,t� =
1

2
�pqepq�z=H�r,t�, �15�

which after some calculation reduces to

�El

E0
= 1 − Hxx�h� − Hyy�h� + 2h�h + ��h�2 + Hxx�h�Hxx�h�

+ � fHyy�h��� + 2�1 − � f�Hxy�hHxy�h�� + Hyy�h�Hyy�h�

+ � fHxx�h��� +
1

2
Hxx�h�2 +

1

2
Hyy�h�2 + �1 − � f�Hxy�h�2

+ � fHxx�h�Hyy�h� , �16�

where we define the generalized Hilbert transform

Hij�h� = F−1��kikj/�k��F�h� , �17�

with indices running over x and y. Eventually, considering

h̄=afFt which cancels out the second term of the right-hand
side of Eq. �1�, we find the dynamical equation

�h

�t
= ��− �1 + cwe−�h+F̃t�/���h −

cw

�

e−�h+F̃t�/�

�1 + ��h�2
− Hii�h�

+ 2h�h + ��h�2 + 2Hij�h�ijklHkl�h��

+ Hij�h��ijklHkl�h�� , �18�

where 
 is set to 1, F̃=afFt0 / l0 and summation over repeated
indices. The long-range elastic interactions enforce the
nonanalyticity in the operator Hij�h� and introduce nonlocal
effects in the dynamical Eq. �18�. The nonlinear terms are
given with �ijij =1, �iij j =−�ij ji=� f when i� j and 0 other-
wise. It is worthwhile to realize that a lone term h�h in the
right-hand side of �18� would be ruled out by symmetry con-
siderations �7� but is allowed here when put in balance with
the nonlocal nonlinear terms. Indeed, taking into account
both local and nonlocal terms ensure the invariance of the

elastic energy under the Galilean transformation h→h+ h̄�t�
for arbitrary h̄�t�, which is a consequence of the hypothesis
of equal film and substrate elastic constants. Accordingly, the

dependence on h̄�t� will appear in the following exclusively
as a consequence of the dependence of ��h� on h which
breaks translational invariance.

III. NUMERICAL RESULTS: ISLAND FORMATION,
COARSENING, AND ORDERING

A. Instability and roughening

We performed numerical simulations of Eq. �18� using a
pseudospectral method. We consider an initial roughness of
amplitude 1 monolayer �ML� given by a random profile. The

initial film height is h̄0�t=0�=7 ML just below the elastic
instability threshold hc�8.2 ML defined below. Similarly to
the annealing case �21�, the simulations reveal that the com-
bination of wetting and nonlinear nonlocal elastic terms pre-
vents the finite-time singularities, which in thick films, lead
to dislocations �16�. In addition, we find that the system evo-
lution depends strongly on the deposition flux. Different
curves of the roughness w= ��h2�− �h�2�1/2 as function of the
deposited height hd=Ft are depicted in Fig. 2 for different
fluxes. The roughness first increases exponentially in a lin-
earlike dynamics. After a first inflexion point, the system
enters a first nonlinear stage where w� t, and after a second
one, displays a faster than linear roughness increase. The
deposited heights corresponding to these inflexions increase
linearly with the flux, though the different curves cannot be
rescaled on a single one, signaling different ripening mecha-
nisms depending on the flux.

To evaluate the time of emergence of the islands, we de-
fine a dynamical critical height hs�F� after which w is greater
than ws=3 ML. It is well fitted by an affine law hs=10
+1200F �ML� with a limit at low flux greater than hc due to
the threshold present in the definition of hs. The values of hs
obtained here for T=700 °C differ from the smaller values
of the apparent critical thickness derived with the analysis of
Ref. �17�. The latter is defined via a comparison of relative
growth rates, whereas hs is defined here directly from the
roughness which is independent of the reference frame. The
dynamical critical height hs is related to the growth in the
linear regime and can be roughly estimated. In the linear
approximation, h small, the evolution of Eq. �18� can be
reformulated in Fourier space as

h�k;t� = h�k;t0�exp��
t0

t

ds��k; h̄0 + F̃s�	 , �19�

where

0

100

200

300

hd = Ft (ML)

100 150 200 25050

w
(M

L
)

FIG. 2. Simulation of the roughness evolution resulting from
Eq. �18� with the deposited height for, from left to right, F
=10−4 ,5�10−4 ,10−3 ,5�10−3 ,10−2 ,2�10−2 ,5�10−2 ,10−1 ML /s.
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��k; h̄� = − k2cwe−h̄/�/�2 + �k�3 − k4�1 + cwe−h̄/�� . �20�

By definition of hc, � is negative for h̄hc and otherwise

positive in a h̄-dependent k interval. To estimate hs, we con-
sider an initial undulation with wavevector k� and an initial
amplitude h1,0=1 ML. We can solve exactly for h1

��r ; t� and
the critical deposited height and find

hs
��F� = � + �W�− 3cw�1 + k�

2�2�exp�− �/��/k�
2�2� , �21�

with the product-log function W and the length

� = h̄0 + 4cw�1 + k�
2�2�e−h̄0/�/k�� + F log�ws/h1,0�/k�

4.

Considering k�=0.35, the solution is well fitted by hs
��F�

=10+1300F �ML� which is a rough estimate of hs for the
full equation at low flux. Similarly to the numerical results,
hs

� increases nearly linearly with F in the regime of param-
eters studied here. Also, the limit at low fluxes is greater than
the instability critical height hc due to the threshold in the
definition of hs. These results could be compared to experi-
ments investigating the appearance of islands as function of
the ratio D /F.

B. Nonlinear regimes

Above the critical height, the system enters the nonlinear
stage where islands, surrounded by a wetting layer, grow
both by deposition and coarsening, see Fig. 3. Then, depend-
ing on the flux, we find different nonlinear regimes that we
will described below. Hence, the island density � is plotted in
Fig. 4 for different fluxes. Islands appear all the later that the
flux is high, as a result of the competition between diffusion
and deposition. In addition, the dynamics depends strongly
on the flux. At low flux, the island density is convex, simi-
larly to the annealing case, when the system has time to
coarsen by surface diffusion. However, in the intermediate
regime for F in between F1 and F2 with F1�10−2 ML /s and
F2�5 10−2 ML /s, the density evolution becomes concave,
whereas in the steady regime, F�F2, the island density is
constant in a large time interval. The values of F1 and F2
depend on the temperature and the details of the wetting that
are set here with typical coefficients. In all regimes, the is-
land density at a given coverage is an increasing function of
the flux and saturates at a value limited by the instability
wavelength, which indicates a route for controlling island
densities experimentally.

At this point, we stress the difference between the flux
dependence that we report here for the elastic instability with
the one already observed during experiments investigating
island nucleation �31,32�. The different nonlinear regimes
occur on time scales much larger than the diffusion time
scale t0 so that the flux dependence in the present work is not
similar to the competition between diffusion and deposition
at stake for island nucleation. In the island nucleation re-
gime, this competition leads to two-dimensional �2D� island
precursors which sizes and densities depend on the time to
form nuclei compared to the time of arrival of new material,
see e.g., Ref. �33�. Hence, the very early stages of island
nucleation depend crucially on the deposition flux. On the
contrary, the elastic instability always begins with the same
stage characterized by an undulation with a wavelength
maximizing the growth rate. The flux dependence occurs
only after this undulation transformed into well-defined is-
land which then coarsen differently depending on the flux.
Hence, the stricking similarity between Fig. 1 of Ref. �32�
and the different morphologies that we display in Fig. 3 is
not to be overestimated.

The change in dynamics from a convex island density
evolution in the annealinglike case to a concave one for
growing films is similar to the results of the experiments by
Floro and co-workers �15� where the negativeness of d2� /dt2

is signaling a non standard ripening. Indeed, a typical coars-
ening dynamics tends to decrease its driving force resulting
in a damped evolution. A faster dynamics can nevertheless
be apprehended within a mean-field approach describing the
island size distribution evolution due to chemical potentials
accounting for elastic interactions �15�. These long-range in-
teractions are precisely the central ingredient of Eq. �18�
which can lead to such a dynamics when coupled with depo-
sition growth and our simulations exhibit a regime where this
concave evolution is to be expected. Moreover, in all re-
gimes, the dot density evolution is slowed down even when
it is given as a function of the instability time scale instead of
the deposited height. Hence, even if a wetting layer has de-
veloped and allows surface diffusion, the stabilization of the
islands results from an effective weakening of surface diffu-
sion currents when deposition is present.

To give more quantitative information on the coarsening
in this system, we computed the island coverage � together
with the mean island volume, see Figs. 5 and 6. Similarly to

(b)(a) (c)

FIG. 3. Typical island configurations in the nonlinear regime for
F= �a� 10−4, �b� 10−2, and �c� 10−1 ML /s in a 128 l0�128 l0 sys-
tem �the snapshots correspond respectively to hd=13, 105, and 283
ML�.
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hd = Ft (ML)
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m
−

2
)

100 150 200 25050

FIG. 4. Island density as function of the deposited height with,
from left to right, the fluxes of Fig. 2.
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the experiments of �15�, we find that the mean island volume
increases faster than the linear growth characteristic of depo-
sition and that the island coverage increases with a concave
evolution. In the steady regime F�F2, the decrease in the
island coverage at constant island density, see Fig. 4, signals
a narrowing of the island base as elastic relaxation in an
isotropic film is more efficient for high aspect ratio islands.
On the other hand, the faster than linear increase in the mean
island volume seems associated to island decimation and is
indeed correlated with the decrease in the island density.

C. Island ordering

The different nonlinear regimes are moreover character-
ized by different spatial organization, see Fig. 3. At low flux,
the islands do not exhibit strong spatial correlations, simi-
larly to the annealing case �21�, while for higher flux, island
decimation, driven by surface diffusion, leads to the emer-
gence of island clusters. These clusters, absent in the anneal-
ing case, involve more and more islands as F increases �Fig.
3�. To quantify these correlations, we first assign an area
mass center to each island and construct a Delaunay triangu-
lation for this set of points. The typical nearest-neighbor dis-
tance histograms in the nonlinear regimes are then plotted in
Fig. 7. At low flux in Fig. 7�a�, the histogram displays a
broad bell shape with a modulation reminiscent of the insta-
bility initial stages, where, beside the first peak near the ini-

tial wavelength ��20 l0, the other peaks arise as coarsening
is fully developed. For intermediate flux in Fig. 7�b�, the
histogram is significantly narrowed with a main peak near �
and other peaks which position increase slightly with time as
island decimation occurs. The first small peak around d=15
arises at a distance smaller than � and reveals the appearance
of island pairing. In the steady high flux regime, Fig. 7�c�,
ordering is maximal and is described by a narrow distance
distribution with two peaks related to the typical distance
between two islands in a cluster and between clusters. The
first peak already observed at intermediate flux arises at a
position significantly lower than the instability wavelength �,
signaling a narrowing of the distance between mass centers
during clustering at high flux, while the second peak sticks at
�. In this case, a particular ordering is observed in Fig. 3�c�
as islands self-organize in ridgelike patterns which result
from elastic interactions and stabilization of the nonlinear
regime by the flux. This squarelike organization leads to a
ratio of the positions of the two peaks in Fig. 7�c� of order
�2. Finally, note that the histograms of the Voronoi tessella-
tion do not give relevant information here, contrarily to sys-
tems with island nucleation. These results are summarized by
the kinetic phase diagram in Fig. 8.

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

F

h d

layer by layer

F1 F2

FIG. 8. Kinetic phase diagram as function of the deposited
height hd=Ft and the flux. For a given flux, growth proceeds mainly
layer by layer up to the dynamical critical height hs �solid line�.
Above, for FF1, surface diffusion is efficient and leads to an
annealinglike ripening. For F1FF2, a nonconventional coars-
ening occurs, where the island density decreases faster than linearly.
Finally, for F�F2, ripening is frozen by the deposition growth, the
island density is constant and highly correlated islands form ridge-
like structures. The three insets correspond to the last time points of
the roughness as function of time as displayed in Fig. 2 for flux
values F=10−4 ,10−2 ,10−1 ML /s.
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FIG. 5. Island coverage as function of the deposition height with
the same convention as in Fig. 2.

50 100 150 200 250
0

1

2

3

4

5

hd� Ft �ML�

�
v�
�1

06
nm

3
�

FIG. 6. Mean island volume, defined above the wetting layer, as
function of the deposition height with the same convention as in
Fig. 2.
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FIG. 7. Island distance distribution corresponding to Fig. 3.
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IV. CONCLUSION

As a conclusion, we studied the influence of a deposition
flux on the growth dynamics of the elastic instability in
strained crystal films. We used a continuum description ac-
counting for wetting and elasticity where the flux arises in a
nontrivial way. Once diffusion proceeded and led to island
formation, we report three different nonlinear regimes, de-
pending on the flux and characterized by different spatial
ordering. At low flux, an annealinglike dynamics is at stake.
Increasing the flux, we find spatial correlations where dots
gather in clusters, together with a nonconventional ripening.

For high flux, ripening is frozen as surface diffusion effects
are inhibited by deposition growth and the dot density is
maximum. The nearest-neighbor distance distribution exhib-
its a first peak linked to the distance between two islands in
a cluster which decreases and a second one related to the
cluster distance. These results indicate a way to tune differ-
ent spatial ordering and are calling for experimental exami-
nation of the elastic instability. Moreover, as an extension of
the present analysis, the influence of the surface energy an-
isotropy on the coarsening dynamics is under current inves-
tigation.
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